import sympy as sp x = sp.symbols('x') f = sp.sin(x) fprime = sp.diff(f,x) x0s = sp.solve(fprime,x) print(x0s) x0 = x0s[0] print('x_0:',x0,'\n') x1s = sp.solve(f-fprime,x) print(x1s) x1 = x1s[1] print('x_1:',x1)
[pi/2, 3*pi/2] x_0: pi/2 [-3*pi/4, pi/4] x_1: pi/4
f = sp.sin(x)*x**2 fprime = sp.diff(f,x) x0s = sp.solve(fprime,x)
No algorithms are implemented to solve equation x**2*(1 - tan(x/2)**2)/(tan(x/2)**2 + 1) + 4*x*tan(x/2)/(tan(x/2)**2 + 1)
x1s = sp.solve(f-fprime,x)
No algorithms are implemented to solve equation -x**2*(1 - tan(x/2)**2)/(tan(x/2)**2 + 1) + 2*x**2*tan(x/2)/(tan(x/2)**2 + 1) - 4*x*tan(x/2)/(tan(x/2)**2 + 1)
import sympy as sp import numpy as np import matplotlib.pyplot as plt from scipy.optimize import fsolve x = sp.symbols('x') f = sp.sin(x)*x**2 fprime = sp.diff(f,x) # convert SymPy functions to NumPy functions numf = sp.lambdify(x, f, 'numpy') numfprime = sp.lambdify(x, fprime, 'numpy') # plot xs = np.linspace(0,np.pi,30) plt.rc('font', size=16) plt.plot(xs,numf(xs)) plt.plot(xs,numfprime(xs)) plt.grid() x0 = fsolve(numfprime,2) plt.plot(x0,numf(x0),'o',) x0 = fsolve(lambda x: numf(x) - numfprime(x),1) plt.plot(x0,numf(x0),'o',) plt.legend(['$f(x)$',"$f'(x)$"]) plt.xlabel('$x$') plt.tight_layout() plt.savefig('sympy_numpy_2.png')
Choose which booklet to go to: